The effective magnetoelectroelastic moduli of matrix-based multiferroic composites
نویسندگان
چکیده
In this paper, we develop a mean field Mori-Tanaka model T. Mori and K. Tanaka, Acta. Metall. 21, 571 1973 to calculate the effective magnetoelectroelastic moduli of matrix-based multiferroic composites, emphasizing the effects of shape and orientation distribution of second phase particles that have not been investigated before. Through a systematic study, it is observed that laminated composites are optimal for magnetoelectric coefficient a11, while fibrous composites are optimal for a33. In addition, these coupling coefficients are maximum when the second phase particles are aligned. It is also postulated that the large discrepancy between theoretical predictions and experimental measurements for magnetoelectric coefficients of multiferroic composites previously reported is partly due to the orientation distribution of second phase particles, which has not been considered before in theoretical modeling. When our calculations take the orientation distribution of second phase particles into account with appropriate texture coefficient, good agreement with experimental data is observed. © 2006 American Institute of Physics. DOI: 10.1063/1.2173035
منابع مشابه
A Numerical Method for the Determination of an Effective Modules for Coated Glass Fibers Used in Phenolic Composites
It is well known that the mechanical properties of fiberglass reinforced "phenolic moulding compounds" are significantly enhanced if the glass particles are coated with silane coupling agents before compounding. It has been shown that improvements obtained by using scanning electron microscopy techniques are due to better bonding of phenolic resin to the surface of treated glass fibers. These o...
متن کاملMechanical Properties of CNT-Reinforced Polymer Nano-composites: A Molecular Dynamics Study
Understanding the mechanism underlying the behavior of polymer-based nanocomposites requires investigation at the molecular level. In the current study, an atomistic simulation based on molecular dynamics was performed to characterize the mechanical properties of polycarbonate (PC) nanocomposites reinforced with single-walled armchair carbon nanotubes (SWCNT). The stiffness matrix and elastic p...
متن کاملA boundary element method for the analysis of CNT/polymer composites with a cohesive interface model based on molecular dynamics
In this paper, a new cohesive interface model is applied to characterize carbon nanotube (CNT) composites using the boundary element method (BEM). In the previous BEM models of CNT composites, a rigid-inclusion model was employed to represent the CNTs in a polymer matrix due to their extremely high stiffness as compared with the polymer. Perfect bonding interface conditions between the CNT fibe...
متن کاملMatrix laminate composites: Realizable approximations for the effective moduli of piezoelectric dispersions
This paper is concerned with the effective piezoelectric moduli of a special class of dispersions called matrix laminates composites that are known to possess extremal elastic and dielectric moduli. It is assumed that the matrix material is an isotropic dielectric, and the inclusions and composites are transversely isotropic piezoelectrics that share the same axis of symmetry. The exact express...
متن کاملEffects of Multi-Walled Carbon Nanotubes on The Mechanical Properties of Glass/Polyester Composites
Excellent mechanical properties of carbon nanotubes (CNTs) make them outstanding candidate reinforcements to enhance mechanical properties of conventional composites. The glass/polyester composites are widely used in many industries and applications. Improving the mechanical properties of such composites with addition of CNTs can increase their applications. In this research, multi-walled carbo...
متن کامل